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On the triangular incommensurate phase in y-brass: 
11. Deformation of the triangular pattern 
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+ Institute for Solid State Physics, University of Tokyo, Roppongi, Minato, Tokyo 106, 
Japan 
$ Faculty of Education, KBchi University, Akebono, KBchi 780, Japan 

Received 27 June 1988, in final form 28 July 1989 

Abstract. An electron microscopic study has revealed the presence of a strong deformation 
of the triangular IAPD pattern in y-brass. Using the free-energy functional associated with 
the phase variables of the pattern, we demonstrate the invariance of the topology of the 
pattern. We can regard the pattern system to be a medium, which we call the ‘phase 
medium’, and we can also obtain the effective elastic constants of the medium. The observed 
deformation of the pattern has been qualitatively reproduced by calculating the strain field 
of the phase medium under a proper boundary condition. 

1. Introduction 

Cu,Zn, --x alloys crystallise with a somewhat complicated structure, conventionally 
called the y-phase, in the narrow concentration range 0.57 < x < 0.66 (Morton 1978). 
The structure belongs to a non-centrosymmetric space group Ti .  Morton first found an 
interesting long-period triangular pattern using electron microscopy and then showed 
that the pattern is due to inversion antiphase domains (IAPD) (Morton 1975,1976,1977). 

A recent paper discussed the origin of the stability of the y-phase by assigning 
the amplitude of a particular phonon mode as the order parameter. Allowing spatial 
modulation of the order parameter, a phenomenological treatment of the formation of 
the triangular IAPD pattern in y-CuZn was developed (Yamada and Koh 1987; hereafter 
referred to as part I). 

Morton (1975) observed further interesting deformations of the regular array of the 
triangular pattern. As shown in figure 1 (see also figure 3 of part I ,  or that originally 
given in Morton’s paper), the triangular pattern is deformed heavily near the boundaries 
surrounding a grain having a somewhat different alloy concentration, which corresponds 
to the region showing the striped pattern (Morton 1974). It is noticeable that at the 
boundaries the striped pattern keeps its rigid straight-line structure, while the triangular 
pattern is heavily deformed from a regular pattern. As is pointed out in part I, these 
characteristics lead us to imagine that the triangular pattern (hereafter called simply ‘the 
pattern’) is drawn on an extremely deformable elastic continuum. 

In order to give a physical basis to this hypothesis, we proceed as follows. Let us 
assume that the perturbation of the pattern can be expressed by the change of the phase 
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1766 H Mitani et a1 

Figure 1. Observed deformation of the triangular 
pattern in the vicinity of the grain boundary of 
the striped phase, which has grown within the 
triangular matrix (Morton 1975). 

of the modulation of the order parameter (phase mode approximation) (Kawasaki 
1985): 

3 

a4 = c (EwO(4 exp(iAow(r)) + cc) (1) 
w = l  

where ljwo(r) is the order parameter of the unperturbed state given by equation (14) of 
part I and cc is the complex conjugate. The regular triangular pattern is determined by 
the three phases of &,o(r), where Y = 1 ,2 ,3 .  

In this approximation, the energy associated with the deformed system should be 
given by the same free-energy functional as introduced in part I. The deformation energy 
is then simply given by the q-dependent part of the free energy. It would then be quite 
possible that the lowest-order term of the deformation energy has formally the same 
expression as the elastic energy of an equi-phase line. It will be shown that the restricted 
condition Z,Aq,, = 0 leads to the invariance of the topology of the pattern. Therefore 
the terms have the same expression as the elastic energy of a continuous elastic medium 
characterised by certain effective elastic constants which are expressed in terms of the 
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parameters included in the free-energy functional. These considerations seem to suggest 
the validity of using the elasticity analogue to describe the deformation of the pattern 
around the grain boundary. In this paper, we will develop a treatment to discuss the 
observed deformation of the pattern based on the idea introduced above. 

2. The free energy 

In part I we discussed the formation of the triangular IAPD pattern in terms of a spatial 
modulation of the order parameter g(r) ,  which is the local amplitude of the frozen AZu 
optical mode, and is also accompanied by a strain ~ ( r ) .  The pattern is obtained by 
minimising the free-energy functional, which is given by 

F =  F1  + F2 + F3 + F4 = ( f l  + f 2  + f 3  +f4)d3r  (2) J 
where 

f l  = ag2 + b [ ( a E / W 2  + (aE/aY>2 + ( a g / w 2 I  
+ c(a*g/ax2 + d25 /ay2  + a2g/az2)*  + a(&;z + + 

f 2  = a t l a x  + Eyz war + E , ,  a g / w  
f 3  = dE4 + eE6 

f 4  =f(a45/ax4 + a4g /ay4  + a45/az4 + a4g/ay2az2 + a4g/az2ax2 + a 4 E / a ~ 2 a y 2 ) 2  

+ g[(a4/aX4)(a2/ay2 - a2/az2)5 + ( a 4 / a y 4 ) ( ~ / a Z 2  - a2/ax2)g 

+ (a4/dx4)(a2/ay2 - a2/822)gy. 

Fl corresponds to the quadratic part with respect to g(r) and ~ ( r ) ,  F2 to the bilinear 
coupling energy between E(.) and ~ ( r ) ,  and F3 and F4 to the higher-order terms with 
respect to 5 and KO.  The signs of these coefficients are chosen to be a < 0, b ,  c > 0 ,  
d ,  e ,  f ,  g > 0 and A > 0 (see part I). 

First, we eliminate ~ ~ ~ ( r )  by minimising the free energies Fl and F2 with respect to 
qj (r ) .  This procedure simply renormalises the parameter b to ( b  - S2/4A). Thus the free 
energy to be discussed is given by 

For the following development to give the deformation energy, we only take F1, F2 and 
F3 into account and ignore the higher-order term, F4. The calculation and discussion of 
the F3 and F4 terms are given in the appendix. 
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As shown by equation (10) in part I ,  the regular state (undeformed state), obtained 
by minimisation of F, is expressed by 

3 
1 

Eo(r) = 5 c, 5ov(r) (4a) 

(4b) 

u = l  

Eou(r) = (S/v2>(exP[i(KOy e r + 991 + cc) 
and 

3 

q; = (n  + 1/2)n 
v = l  

( 5 )  

where the KO, ( v  = 1 ,2 ,3 )  are the k-vectors pointing in the three equivalent (51 1) 
directions within the (1 11) plane: 

K(: 11 !?(I, 172) K! II a(% 1, 1) K; I /  w, 7‘,1) 

and 

/KE/ = (l/VZ) v ( b  - S2/4A). 

In this state, the equi-phase lines of Eo(r) simply form the regular triangular pattern. 
To discuss the deformation of the pattern we use the same free-energy functional as 

previously introduced. In contrast, however, we adopt the ‘phase mode approximation’ 
for the order parameter E(r). That is, we assume the deformation can be expressed solely 
by the additional phase factors and we express E(r) under the external perturbation in 
the form: 

where 

E v W  = ( 1 / W E o v ( r )  exP(iA~u(r))  + c.1. (6b) 

Later we denote the total phase of f v ( r )  as Q u ( r )  = Kt * r + q u ( r )  KO, - r 
+ q: + Aqv(r ) .  At this stage, we consider that the perturbation can be expressed by 
the additional phase factor A q  ,,(r) alone; however, below we will discuss the relationship 
between the Aqv(r)s. 

We use the same free-energy functional, equation (2) (or equation ( 3 ) ) .  Substituting 
f ( r )  of equation (6) into equation (3) and neglecting terms proportional to (a2q(r)/ar’) 
gives the free energy in the deformed state: 

where 

B b - S2/4A 

and L is the size of the system. 
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Using the equilibrium value of IK; 1 = d( -B/2c) given in equation (7) and expanding 
A q  around KO,, we obtain the following compact formula for the free energy: 

(8) 

Omitting the constant term, we can write the free energy as 

(9) 

Thus we find that F is  a functional of qu(r )  and (aq,(r)/ar) (v = 1,2,3).  The first term 
is the ‘one-dimensional’ elastic term in each v-direction, while the second term is the 
phasing-relation term. 

3. Phase medium 

We must discuss the equation 

6F = 6(Fe1a + Fphase) = (10) 
to obtain the solution which has the minimum of F. On the other hand, a typical solution 
is obtained by firstly setting 8 F p h a s e  = 0, which gives us a relationship between the q , ( r ) ,  
and secondly by setting 6Fe,, = O t .  This relationship has the following significance, 
although its solution does not contain the ground-state free energy. The minimisation 
of Fphase is obtained by using the Euler-Lagrange equation 

3 

which gives 

ull(r) + q 2 2 4  + 9,3(r) = (n  + 1/2)nS 

A c p l ( 4  + Acp2(4 + Acp3(r) = 0. 

(12) 
or 

This leads to a concept which we will call ‘phase medium’. 
Let us consider a periodic pattern in two-dimensional space, characterised by a 

periodic function fo(r). If a perturbation results in a deformation of the pattern, the 

t This procedure will be justified and the calculation will be performed in 0 4. 

where each term on the right-hand side corresponds to the respective term in the middle expression. 
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periodic function consequently changes fromfo(r) to f ( r ) .  If the topology of the pattern 
is invariant, we can express the deformed function f(r) by 

f(4 = fo(r + u<r>>. (13) 

That is, the ‘phase’ of the original pattern at r has been shifted to r + u(r) after the 
deformation. In this case, it is natural to consider the system as being a continuous 
medium associated with the ‘phase’ of the pattern (phase medium) and the deformation 
of the pattern due to the perturbation as being the elastic deformation of this medium. 

In the present system the order parameter E(r) = X:,E,(r) represents the function 
f(r). In 8 2 we assumed the ‘phase mode approximation’ for each constituent wave: 

However, this does not mean that the phase mode representation of E(r) is always 
satisfied. 

Here we use the constraint in equation (12), 

is satisfied during the deformation process. Using equation (18), it is easy to show that 
the constraint gives the necessary condition to allow the phase mode representation of 
5(r> : 

E U ( 4  = Euo(r + U(Ph)) U = 1,2 ,3 .  (17) 
That is, there exists a common vector u(ph) which gives the phase shift of each Eu(r) 
irrespective of U. Then we have 

= E& + U(Ph)). 
The geometrical interpretation of the above equation is that, even after the deformation, 
the three equi-phase lines intersect each other. That is, the topological characteristic of 
the pattern is maintained during the deformation process. We see that this situation is 
almost consistent with experiment (see figure 1). 

From these considerations, we can take such a system with ‘a’ periodic pattern to be 
a phase medium’. We can imagine that the uniform phase medium has elastically 
‘strained’ under an external perturbation so that the point r embedded on the undistorted 
phase medium has been displaced by u(ph). 

‘ 7 ‘  

The value of u(ph) is easily obtained from 
KO, * u(ph)(r) = - A q u ( r ) .  (19) 

Defining an effective strain tensor E?) of the phase medium, in analogy to the definition 
of the ordinary strain of an elastic medium, by 

we rewrite equation (22) as 

J A q u ( r ) / J r  = -&(ph) *KO,. (21) 
This gives the expression of the effective strain tensor explicitly in terms of A q u ( r ) .  
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Referring to a specific orthogonal reference frame (2, y) in the (1 1 1} plane, where 
the X axis is taken parallel to one of the wavevectors of the three modulation waves, 
KY, equation (24) is expressed as follows: 

4. Minimisation of the free energy 

We will investigate the solution {q, ,(r)}  which has the minimum free energy. The solution 
is obtained using the equation 6F = 6(Fela + F p h a s e )  = 0 (equation (lo)), which leads to 
the Euler-Lagrange equation: 

w ( q , ( r )  + q2(4  + 9,3(r>)l= - 3 a 1 ~ 0 , i ~  a 2 A q , ( r ) / a q t  (v = 1 ,2 ,3 )  (23) 

where qy  is the coordinate in the direction of Kt f  and a = 4c/15et2 is the ratio of the 
coefficients of Fela and Fphase .  Here we note that equation (23) includes the equations 

We can see from equation (23) that , 

A q , ( r )  + A q 2 ( r )  + A q 3 ( r ) +  0 as a+ 0. (24) 
Thus if a i s  small, the system is approximately the phase medium. Hereafter, in contrast 
to the approximate 'phase medium,' we will denote the system in which 
A q l ( r )  + A q 2 ( r )  + A q 3 ( r )  = Oasthecompletephasemedium. Theexperimentalresult 
shows that the phase-medium picture explains the deformation process quite well. 
Therefore we can consider that 1 LY/ 1. 

On the other hand, the equation 6 ( F p h a s e  + Fe,a) = 0 can be rewritten as 

= 0. 

This can be interpreted as Lagrange's method of undetermined multipliers where Fe,, is 
minimised under the restricted condition that Fphase  is stationary, i.e. 
cpl(r) + q 2 ( r )  + q 3 ( r )  = ( n  + 1/2)n$ and the undeterminedmultiplieris (1/3a). Need- 
less to say that a is not an undetermined number, rather it is a deterministic number 
which is the ratio of the coefficients in the Ginzburg-Landau expansion. However the 
fact that la1 < 1 (or /1/3al 9 1) from equation (23) and the experiment may allow a 
treatment in which a is regarded as an undetermined number. Equation (25) then leads 
again to equation (23), in which (1/3a) is also interpreted as the undetermined multiplier. 
Substituting the restricted condition that q l ( r )  + cp2(r) + q 3 ( r )  = ( n  +.1/2)n into 

t q u  = Xcos 0, + j s i n  8,. The coordinate axis is parallel to K t  = ( /Kt1 cos O V ,  /KO,/ sin 8 " ) .  (2, j) is a coor- 
dinate on the observed plane. 

We cannot consider another relation, Pup, = nrc, from the experimental result and the physical viewpoint. 
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equation (23), the multiplier (1/3a) becomes infinite. This result is consistent with 
the above fact that (1/3a) 1 from 6(Fela + Fphase) = 0 and the experimental result. 
Therefore the use of Lagrange’s method to obtain the solution {qv(r)} which gives the 
complete phase medium can be justified. 

We now examine Lagrange’s method in detail, using the three following steps, 

(i) The restricted condition is: 
3 

6F = Y e t 6  d r  ( c0s[2 (q l  + q2 + q 3 ) ] ) 6 q w  = 0. (26) i w = l  
ela 

This leads to the phasing relation q l ( r )  + q2(r )  + q3(r )  = ( n  + 1/2)n (or 
Aql(r)  + @2(r) + @dr)  = 0) .  

(ii) Fela under the above restricted condition is given by 

2 

- A q l  - A q 2 )  .K!) 1. 
Here we note that the number of independent functionals becomes two, for example 
q l(r) and q2(r) ,  as a result of the restricted condition. 

Substitution of equation (21) into equation (27) gives the deformation energy of the 
pattern in a quadratic form with respect to d p h )  as follows: 

We can easily show that the formalism is not changed by using the conventional sym- 
metrical strain tensor {2(ph)}t .  Using the tensor components of 2(ph) ,  the energy (28) is 
reformulated with the same form as the elastic strain energy: 

J i , j , k . /  ’ 

Here, C g ’  represents the effective ‘elastic constant’. We have thus established that the 
system under consideration is equivalent to an elastic medium characterised by the 
effective elastic constants {Cqki }. 

Comparing equations (28) and (29), and substituting the components of KO, into 
equation (28), we obtain the following values as the components of CL:,’): 

(Ph) 

Ccp? = Ccph! = ”B/  E 2  
YYYY 

C(Ph’ 
(otherwise) = O. 

The expressions for the components of the C ( p h )  tensor show that the ‘phase medium’ 

i The symmetrical tensor components t y )  are defined as 

t:,’’h) = i(aulph’/ax, + aulph)/ax,) (xh,  x ,  = or y). 
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is elastically isotropic. The contribution from the higher-order terms, considered to be 
a small perturbation, will be discussed in the appendix. 

We further note that the tensor components are proportional to IBI = b - d2/4A. In 
part I it was shown that the long periodicity of the pattern in y-CuZn is due to the 
near cancellation of b and 6*/4A. Hence, we see that the pattern will be in fact very 
deformable. The long periodicity and the ease of deformability of the pattern are inter- 
related. 

(iii) Minimisation of Fela under the restricted condition yields: 

under the restricted condition at each point r .  This equation is the same as equation 
(23’), except that there is no phasing relation in equation (23’).5- 

Using the relationship between cpv(r) and d p h )  from equation (21) in Q 3 ,  we can 
easily show that equation (32) is equivalent to the force balance equation in elasticity 
theory: 

This equation also results from the minimisation of the elastic formula for Fe,,, equation 

We solve the equation under the following boundary condition: a small circular hole 
is cut at the origin of the free continuum, and then the edge of the circle is expanded to 
form a large ellipsoid keeping the outer boundary of the continuum fixed (see figure 2). 
This situation is more clearly understood by introducing the phase soliton picture (Bak 
1978, Bak and Emery 1976). 

This problem has been already studied for the case of an ordinary elastic system, 
Following the established treatment, we introduce Airy’s stress function q ( r ,  e )  of the 
two-dimensional system which satisfies the double harmonic equation 

(29). 

[a2/ar2 + (i/r)(a/ar) + (i/r*)(a*/ae2)12q = o (34) 
expressed in a cylindrical coordinate system ( r ,  e ) .  

We expand the @-dependent part of cp with respect to cos(m0) and sin(m0) and take 
the terms m S 4 into account. The components of the stress tensor (a,,,) are then 
expressed by 

a$,ph)(r, e)  = - ~ ~ ( i / ? )  - 4 ~ , ( ~ 0 ~ ( 2 e ) / r * )  - 18P4(cos(48)/r4) 

a(,p,h)(r, 0 )  = Po(l / r2)  + 6P4(cos(48)/r4) 

a;eph’(r, e> = -2~,(sin(20)/r*) - 12~,(sin(40)/r4) 

(35)  

t In the limit LY+ 0, equation (23’) approaches equation (32) and also equation (33). For finite a, each 
expression in equation (32) shows the ‘phase medium’ in a narrow sense which consists of only two groups of 
the equi-phase lines. 
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Figure 2. Schematic description of the 
boundary condition used for the calcu- 
lationin 5 3. Acircularhole(brokencirc1e) 
is opened in an elastic medium and then 
expanded to form a larger ellipsoid. The 
total mass of the medium is conserved dur- 
ing the process. 

where Po, P2 and P4 are the parameters to be determined by the boundary conditions, 
Using Young’s modulus and Poisson’s ratio of the elastic medium, the strain components 
are given by 

&p = au,/ar = [(1 + o)/E][(1 - o ) o p  - oo(,Pdl)] 

E‘epeh’ = ( i / r ) (au, /ae)  + u,/r = [(I + o>/~1[(1 - o)o(,Pdl) - oa;,ph)] 

= 1 2[(l/r)(au,/ae) - UO/Y + au,/ar] = [(1 + o)/E]o:;h). 
(36) 

In the present case, the Young’s modulus E and Poisson’s ratio o associated with the 
effectiveelasticconstants{C!$}aregivenas o = 1/4andE = (15/16)1B182. Theabsolute 
value of d p h )  is irrelevant because E only normalises the scale of Pi (i = 0,2 ,4) .  

Finally, the displacement of the phase medium at (Y,  e ) ,  u(ph)(y ,  e ) ,  is expressed by 
the following simple analytic functions: 

These values give the deformation of a pattern drawn on the medium during the process 
where a circular area has been expanded to a larger ellipsoidal region. The results of the 
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Figure3. Calculated pattern when the intitial hole 
(broken circle) is enlarged to the ellipsoidal hole 
within the phase medium. The pattern quali- 
tatively reproduces the observed deformed tri- 
angular pattern. 

calculation of the deformation of the triangular pattern are given in figure 3, where Po = 
8, P, = 2 and P4 = 2. It is seen that the calculated pattern seems to reproduce the 
essential characteristics of the observed deformation (Morton 1975). 

In the above discussion we considered the complete phase medium in which (1/3a) 
= 35 (or CY = 0); however, this value is large enough but is finite in the real system which 
is the approximate phase medium. Finally we estimate the deviation in the free energy 
of the complete phase medium from the ground state, i.e. the appropriate phase medium 

f 0 ) :  

A F  = F{p(r)  = 0} - F{p(r)  # O}. (38) 

Note that q l ( r )  + q 2 ( r )  + q3(r)  ( n  + 1/2)n + p ( r ) ,  or A q , ( r )  + A q 2 ( r )  + 
Aq3(r )  = p ( r )  in the ground state. Note also that Ip(r)l and la1 are of the same order 
(from equation (23)). 

Substituting this relation into equation (9), the ground-state free-energy density can 
be rewritten as 

f(4 = (4c/3>t2{[(aAq1/w NI2 + [(aAq,/ar> ’ KSI2 

+ [ ( d / a r ) ( O  + p ( r )  - A q p ,  - A q , )  * @ I 2 )  + % e t 6 ( 1  - 4p2 + . . .) 
= ie,$6[[1 - 3a{[(aq1/ar) * @ I 2  + [ ( a q , / a r )  * K S ] ’  

+ [ (a lar)  (0 - AT1 - 

+ { 6 4 ( a p ( r > / W  ‘KO31 ‘ [(a/ar>(o - A V 1  - Aq2) ‘ @ I  
- 4p2(r)} + . . .I. 

W} 

(39) 
These terms can be classified by the order 

5 
3 

F = - e t 6  1 dr(o(1) + o(a) + o(a2)  + . . .). 
Obviously the free-energy density of the complete phase medium corresponds to the 
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term (o(1) + o(a)). Thus, the shift of the energy in the complete phase medium from 
the ground-state energy is represented by 

) I  (41) i j d r ( o ( u 2 )  + 0(a3) + . . . A F = - e E 6  5 
3 

that is, more than a2-order. We consider these terms to be negligible. 

5. Conclusions and discussion 

We have shown that the deformation of the triangular IAPD pattern can be understood 
in terms of an elastic continuum model of the phase medium. The regular arrangement 
of the equi-phase lines in the normal IAPD pattern defines the undistorted phase medium. 
Using the free-energy functional, we could introduce quantities to discuss the deform- 
ation of this ‘phase medium’, such as the effective strain, d p h ) ,  the effective stress 
(cr!,:”’,, etc, and the effective elastic constants, C g ) .  The observed deformation has 
been qualitatively reproduced by calculating the displacement field under the proper 
boundary condition. 

We have derived the important sum rule (equation (12)) 
3 

v = l  

This result has two important implications from an experimental viewpoint. 

(i) The sum rule has been deduced using equation (23) and the assumption la1 < 1. 
However, in the region where the pattern is heavily deformed, this condition may not 
be satisfied in spite of the small a. We expect the sum rule to be broken near the grain 
boundary where the deformation is very strong. In fact, we can see in the observed 
electron micrographs that the vertices of the full triangles are linked completely in the 
non-deformed or weakly deformed region, while they sometimes fall apart near the 
grain boundary. The difference is very subtle, and can only be seen in the original figure 
presented in Morton’s (1975) paper. 

(ii) It is convenient to introduce the ‘local wavevector’ to interpret the deformed 
pattern. Let us expand q ( r )  with respect to r around ro: 

q u ( r )  = qu(r0)  + caqu/ar> ‘ ( r -  ro>. 

E u  (4  = b P [ i  (KO, . r + q U (4)l + 4 

(42) 

The order parameter gy(r)  around ro is given by 

= E(exp{i[KO, . r + qv(r0)  + ( a q u / a r > l r , .  41 + CC) 

= t(exp[i(K: (ro) . r + 9 v (ro>)l + 4 (43) 

where KL =KO, + d q V / d r .  This means that the spatial modulation in a coarse-grained 
region around ro may be approximated by a sinusoidal modulation with the wavevector 
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Figure 4. 'Local-k' representation of the tri- 
angular pattern: (a)  the regular pattern and the 
corresponding set of {KO,}; ( b )  two typical de- 
formed patterns and the corresponding sets of 
{ K : } ,  The local free-energy minima in k-space may 
be considered to have displaced from {KO,(r)} to 

K; 

(01 (bi {KI(r ) }  under local stress. 

KL(r,,) which we call the 'local wavevector'. Due to the sum rule given in equation (15), 
the local wavevectors { K I }  satisfy: 

C . K : ( r )  = o 
U 

(44) 

which is the necessary condition for the three waves (exp(iKI - r ) )  to form a triangular 
pattern. We may interpret the characteristics of the deformed triangle around r, as being 
represented by the set of local wavevectors { K ; ( r " ) }  (see figure 4). 

The local-k representation of the deformation is useful for the following discussion. 
As discussed in part I ,  { K e }  is determined by the minimum points of the free-energy 
surface in k-space. Similarly, { K :  ( r ) }  must correspond to the new minimum points of the 
local free energy when the system has been brought under the effective stress. If the 
energy surface has a shallow minimum in k-space, the minimum point is easily displaced, 
whence the pattern is strongly deformed under a small perturbation. 

In § 1 we noted that at the grain boundary the triangular pattern is subjected to strong 
deformation while the striped pattern apparently shows no appreciable changes. This 
situation may be understood from the above viewpoint as follows. The free-energy 
surface of the present system has basically two kinds of minima in k-space. One is at 
/k,l = lo--* A-', representing the stabilisation of the striped phase. The other is at lkTl = 
lop3 A-' corresponding to the triangular phase. We consider that the minima at kt is 
very shallow while that at k, is well defined. Under the same effective stress field, the 
triangular pattern is easily deformed but the striped pattern will remain relatively rigid. 

Appendix 

Here we discuss the higher-order term F3 and F4 in equation (2). In this appendix, we 
specify a term in Fdenoted by F ( " ) ,  where the asterisk stands for the coefficients e ,  f ,  g, 
. . . , of the specified term and we also denote k,  = KO, for simplicity. The terms Fid) and 
t'!) are isotropic and the terms F i f )  and F F )  are anisotropic in terms of the direction of 
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the wavevectors. In addition, we will discuss the term Fgk) which is also discussed in the 
appendix of part I. 

It is evident that F i d ) ,  whose integrand consists of g4, gives the same constant value 
(5/2)dp as in the regular triangular state in part I. On the other hand, F f )  contributes 
to give the sum rule 

3 

u = l  

This condition determines the relative phase relation between the three waves. That is, 
F f )  is essentially controlling the ‘relative phase locking’ condition. The term 

gives essentially an identical contribution. Using the same argument as for the FYI,  we 
have 

Fik)(r) = h t2 1 h sin(q,(r) + q 2 ( r )  + q3(r ) )  d r .  (A31 

The functional derivative of this term results in the same relation for Aq,(r). 
Now we discuss F4, which represents the anisotropic part of the free energy: 

F : ~ )  =f[a4g/ax4 + a4g/ay4 + a 4 ~ / a Z 4  + a4g/ayZaz2 + a4g/aZ2aX2 

+ a4g/ax2ay2I2 

F?) = g[(a4/ax4)>(a2/ay~ - a2/az2)g + (a4 /ay4 ) (a~ /aZ*  

- a 2 / a x 2 ) ~  + (a4/ax4)(a2/dy2 - a2/az2)EI2. 

First we calculate Fi f ’ .  Substituting equation (6) into (A4), we obtain 

We take the three equilibrium directions of k,, kl 1 1  [l, 1, -21, k2 1 1  [-2, 1, 11, 
k3 / I  [l, -2,1] in the (x, y ,  z )  framework. Using the above k ,  (v = 1,2 ,3) ,  the first term 
of equation (A6) is equal to zero as shown in part I. However, the other terms remain 
finite. 

Let us use the new reference frame (2, J ,  2) as in § 2. The transformation matrix is 
given by 



Deformation of the triangular IAPD pattern in y-brass 

Then we have 
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(A71 

within the order of ( a q / d r ) .  Corresponding to equations (15) and (16), the derivation 
(aqi /af} along the f direction is given by 

Finally we obtain the F i f )  term, as expressed in the (2, j ,  f) reference frame, as 

Obviously, this term does not contribute to the deformation energy within the (1 11) 
plane. 

We also calculate the F! f )  term by substituting equation (6) into (A5). This gives 

Since the first term is eliminated because of the symmetry properties of k, ,  we con- 
centrate on the remaining terms. Following a similar procedure to that adopted for 
F i f ) ,  we obtain FF) to lowest order of (aq /dr ’ )  as follows: 

+ ( - + exp[i(k, - r + q!)] 
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Substituting equations (15) and (16) into (A12), we get 

We ignore the last term which represents the rotation of the total system. Finally, we 
obtain the free energy of the pattern deformation using the new coordinate system: 

The effective elastic constants are given by 

c -._. = c-..- = g  
c..-. = -g 
c..-. = 2g 

x.rx,xx p y y  

YY!’). 

x y x y  

C(others) = 

where 

These tensor components correspond to the elastic constants of a system with an 
isotropic symmetry. However, they have an anomalous elastic nature, i.e. the Poisson‘s 
ratio becomes infinite. We must add these elastic constants to the main terms in equation 
(22), then these components will give minor contributions because they are higher order 
in Ikl compared with the isotropic terms. 
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